Building Android with
clang

Linux Plumbers Conference 2014,
LLVM Microconference

Bernhard “Bero” Rosenkranzer, Linaro
bero@linaro.org

Quick status update for the impatient

“It compiles, therefore it works”

(A dangerous method of detecting bugs - might
be patented by Microsoft QA dept.)

Quick status update for the impatient

boots to text mode

/ D) .
“It @pj@, therefore it works”

Quick status update for the impatient

and runs many apps
boots ’@:&m@

/ D) .
“It @pj@, therefore it works”

Compiles for Nexus 4, 5, 7 and 10.
4 Is currently untested. 10 works great, 7 works

Patch submission status

Overall 112 patches submitted

81 accepted

27 waiting

4 abandoned in favor of better solutions

Script to apply all waiting patches:
git://android.git.linaro.org/aosp-patchsets.git

Quick performance check

clang-built AOSP is currently about 2.6% bigger
than gcc-built AOSP.

Performance depends on what is being
checked, but overall gcc is still ahead.

clang is around 20% faster at “make droidcore”.

Cheating twice...

We're currently setting
LOCAL CLANG := false

for /init and the GLESv1 and GLESvZ2 wrappers
In frameworks/native/opengl/libs -- causing
those bits to be compiled with gcc.

Cheating twice...

clang-built /init reboots the device before adb or
other tools useful for debugging come up (even
running clang-built init on an already built
system causes a reboot - we're likely triggering
an error handler)

clang-built GLESvZ2 crashes the Ul on startup.

Workaround for GLESv2 wrapper

The GLESVZ2 wrapper has a generic C version
that works perfectly with clang (#1f

USE SLOW BINDING), and asm versions that
don't.

Unfortunately, adding overhead to any OpenGL
call is not a good idea...

arm asm wrapper’s code

#define GET TLS(reg) "mrc pl5, 0, " #reg ", cl3,

#define CALL GL API(api, ...)

asm volatile (

GET TLS (rl2)

"ldr

" Cmp

rl2, [rl2, %[tls]] \n"
rl2, #0 \n"

"ldrne pc, [r12, %[api]] \n"

[tls]
[api]
l|r12"

"J" (TLS_SLOT OPENGL API*4),
"J"(builtin offsetof (gl hooks t,

c0, 3 \n"

gl. api))

~ - = —

= = =

Sometimes clang is picky...

e ‘register’ keyword usage in Chromium

e array subscripts of type “char” (hexdigit['0’]
=...)

e undefined internal functions, undefined
variables

e Use of GNU initializers instead of C99

e Conditions that can’t be true

Sometimes clang is picky...

e empty structs

® asm(“add w0, w0, #-1");
(converted to sub w0, wO, #1 by gas,
but not by clang)

e unused parameters

Sometimes clang is picky...

e Complains even about code that is about to
be thrown away:

static void a{() ;
vold b () {
1f (false)
al();

... and sometimes it finds real bugs

UCHAR a[X];
for (int 1=0; 1<X; 1++)
b = a ? tagCpe++ : tagSce++;

from MPEG TP decoder

... and sometimes it finds real bugs

Sltefen st r [30] ;
snprintf (str, “%$s”, x);
ARSI == NULL)

return ERROR;

from gcom camera HAL

... and sometimes it finds real bugs

vold something(char n[30]) {

1f (!memcmp (buffer, n, sizeof(n))) {

from gcom bluetooth kernel module

... and sometimes it finds real bugs

class A {
vold *something () {
1f(this == NULL) return NULL;

return something;

}
from Binder

gcc extensions

AOSP used to use some gcc extensions not supported by
clang:

e Nested functions

e Dbuiltin_va arg pack

e variable-length arrays of non-POD types
e variable-length arrays in structs

... and 1 clang bug

There’s only 1 place in which we have to work around a
clang bug:

char s[x] attribute ((aligned
(PAGESIZE))) ;

http://llvm.org/bugs/show_bug.cqi?id=13007

/init and GLESv2 miscompiling may or may not be clang
bugs.

http://llvm.org/bugs/show_bug.cgi?id=13007
http://llvm.org/bugs/show_bug.cgi?id=13007

Things that still need to be done

e Fix/init and GLES wrappers

e Investigate crashing apps

e Test other devices (esp. Aarch64, x86,
MIPS)

e Set up daily builds so we detect new
breakages and patches no longer applying
quickly

Things that still need to be done

e Update clang (AOSP currently uses a pre-
3.5 snapshot)

e Test different compiler options

e Build the kernel with clang too (currently
using the prebuilt kernel)

e Investigate where clang based builds are
much slower, optimize

Things that still need to be done

e Fix build failures with integrated as (right
now, we're forcing -no-integrated-as into the
compiler flags)

What else?

What else can we do to help AOSP work with
llvm/clang toolchains?

